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FLUIDS 4 
CFD 1 – NUMERICAL METHODS IN SCIENCE AND 

ENGINEERING  

 OVERVIEW 

 

In this section you will learn about: 

• The general approach taken by popular numerical methods 

(the breakdown of a problem using a mesh or grid). 

• The three main methods for doing this and their applications 

in science and engineering. 

• The Finite Element Method (or Approach) – FEA/FEM 

• The Finite Difference Method – FDM 

• The Finite Volume Method – FVM 

• You will also learn something of the basic operation of these, 

concentrating on FDM 

ASSUMED KNOWLEDGE  

 

In this subject it is assumed that you already have knowledge about 

the following topics: 

• A good knowledge of fluid parameters  

• Incompressible flow including Bernoulli, Continuity, Reynold’s 

Number and Thrust equations 

• Compressible flows and shockwaves 

• The basic ideas behind CFD and some practice of its use 

  

OBJECTIVE 

The overall objective 

of this section is to 

learn about the three 

main numerical 

methods used in CFD, 

what they are used 

for and what their 

attributes  are. 

Cover image: “high velocity flow 

around space-shuttle on reentry” 

by NASA. Public domain, NASA 

terms and conditions (see page 16)   
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TOPIC 1 – NUMERICAL METHODS IN ENGINEERING  

 

There are three common numerical methods used in engineering to solve PDE type problems. 

Each one has its own advantages and disadvantages and tends to be used in particular niche 

areas. These three are shown in table 1 below along with their properties.  

 

Method Main applications Advantages and 

disadvantages 

Finite Element Analysis 

(FEA) 

Mainly structural 

mechanics, also used in 

CFD, thermal modelling 

and magneto/electro-

statics 

Main structural mechanics 

method. Rather limited by 

the structure of the maths 

to problems which can be 

formulated in the same 

way as structural 

problems.  

Finite Difference Method 

(FDM) 

Electromagnetics, heat 

transfer, CFD and others. 

Simplest and most general 

of the methods. Can be 

used to solve most types 

of PDE. Eclipsed in CFD 

now by FVM.  

Finite Volume Method 

(FVM) 

Mainly Computational 

Fluid Dynamics (CFD), but 

can be used in other 

applications 

Allows unstructured grids 

and good representations 

of compressible flow 

(main CFD method). 

 

Table 1, The three most common numerical methods used in advanced engineering problems. 

Let’s look at each of these methods one by one (FVM is too involved to consider in much detail, 

but an overview is given below).  

TOPIC 2 – GENERAL PRINCIPLES AND IDEAS – USING FEA AS AN EXAMPLE 

 

Since the Finite Element Method is mainly used in structural modelling, we’ll consider it 

initially in this context here. 

Stress, strain and deformations are easy to calculate for simple shapes and components – for 

example beams and shafts - but what about the complex shapes and structures that one might 

find in a real machine or structure? These are generally too complex to calculate simply by 
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hand. The modern method of handling these issues is to use Finite Element Analysis (FEA) 

software. 

The idea of this method and the others (FDM and FVM) is to break-down the structure to be 

analyzed into many small one, two or three dimensional blocks called elements as shown in 

figure 1, below: 

 

 

 

 

 

 

Figure 1, A complex structure can be broken down into simple elements such as these. 

It is easy to write down the equations for one such simple unit – and not just if the element is 

surrounded by the host material, but also if one or more sides are exposed on a component 

edge. Rectangular elements are not the most often used, but are shown here as an illustration 

of the concept. 

Now, if we split up a complex component into such simple units, we can analyze its behavior 

by working out all the single elements and then added them together to get the behavior of 

the whole thing.  

Figure 2 shows an actual 3D component split up into cuboid type elements. The mapping of 

the grid or mesh of elements onto the object is called meshing and achieving a good mesh 

(with a fine resolution, in the important stress-prone areas) is key to the success of the FEA 

technique (and the others too, especially in CFD).  

 

Figure 2, a complex component split into simple cuboid elements using a mesh. 
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rectangular element 
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A three-dimensional cuboid 
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This approach allows the designer to check the stress, strain and deflection of very complex 

shapes - and many commercial programs are available which perform the analysis. The design 

approach adopted in many projects now has such simulation as a key part of the process as 

shown on the flow chart in figure 3. 

 

 

 

 

 

 

 

Figure 3, how simulation in a modern FEA/CFD simulator like ANSYS fits into the design cycle. 

TOPIC 3 – HOW FEA WORKS 

 

Consider a one dimensional bar of material in its elastic region as shown in figure 4. If we 

exert a force on this it will stretch and return to its original size when the force is removed – 

it obeys Hooke’s law like a spring. 

 

 

 

  

 

 

  

 

Figure 4, a simple bar in tension stretches elastically. 

Design the system on paper 
using the basic equations and 

simplified component structures 

Simulate the system using a program 

like ANSYS – test whether the system 

behaves as expected from the basic 

equations and is robust to component 

tolerances and other practical issues 

Build working prototype or scale 

model (if possible) of system – 

check and refine on simulator 

again if necessary 

Prepare full plan for 

manufacturer, get preproduction 

example and test – iron out 

problems 

Produce final “build pack” for 

manufacturing – contains plans, 

component list, instructions, etc. 

Bar of metal stretches by a distance u 

when a force is applied 
F F 

u 

Bar acts like a spring if it 

is in its elastic region 
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In the diagram, the original length of the bar is represented by the filled-in area and the 

extension caused by the applied force is shown unshaded. Likewise, the extension of the 

equivalent spring is shown as the dotted length. 

The formula for this is shown below: 

kuF −=  

Where k is the spring’s stiffness (given for a bar by AE/L, where A is cross-sectional area, E is 

Young’s modulus and L is the original length).  

The equation simply expresses the idea that the further you extend the spring the more force 

is required to pull it apart (or alternatively, the more force the spring exerts on your hands as 

it tries to return to its original position). 

Therefore if we know the spring’s stiffness we can calculate its deformation: 

k

F
u

−
=  

From these relationships and the dimensions of the bar, we can also easily calculate stress 

and strain. 

All this can be extended to two dimensions as shown in figure 5. 

 

 

 

 

 

 

 

 

Figure 5, a spring (representing a bar) in two dimensions.  
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We could write out equations for all these components: 

yyy

xxx

ukF

ukF

−=

−=
 

However at this point it might be easier to writing this in matrix form: 
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k

F
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This can be written in shorthand like this: 

KuF =  

Where the bold letters indicate that the variable referred to is a vector or matrix. 

The K is called the stiffness matrix for the material. To work out the deformation u now means 

inverting the matrix K: 

FKu 1−=  

This idea can of-course be extended easily in the same way into three dimensions. 

We can extend it to many springs in the same way as shown in figure 6. 

 

 

 

 

  

 

 

 

    

 

Figure 6, many springs (bars) can joined together to form a structure.   
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This is equivalent to chaining bars together to produce structures as shown in figure 7 

 

 

 

Figure 7, two bars with different properties, forming a structure. 

If the stiffness matrix of A is kA and B is kA: 

𝑘𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
]  𝑎𝑛𝑑 𝑘𝐵 = [

𝐵11 𝐵12

𝐵21 𝐵22
] 

The new total stiffness is kT: 

𝑘𝑇 = [
𝐴11 𝐴12 0
𝐴21 𝐴22 + 𝐵11 𝐵12

0 𝐵21 𝐵22

] 

And the matrices for large and complex structures can be built up in this way. 

So, perhaps you can see that this is basically how a structure in FEA is formed (although the 

stiffness matrix would usually written down for a solid triangular element). The main 

computational overhead in the FEA is caused by inverting the stiffness matrix. 

TOPIC 4 – EXTENDING FEA TO OTHER APPLICATIONS  

 

FEAs can be reformulated as a general solution approach to PDEs. However, they are 

particularly useful and successful in areas where the equations can be formulated similarly to 

that outlined above. Such applications include Electrostatics and Magnetics, Fluids (CFD) and 

Heat transfer. For example in conductive heat transfer, if T is a matrix of nodal temperatures, 

K is one of thermal conductivities (the equivalent of the stiffness matrix in the mechanics 

examples) and Q one of heat generators: 

𝑸 = 𝑲𝑻 

You should notice the similarity to the basic equation given for mechanical strain in the 

sections above. In fluids: 

𝑭 = 𝑲𝝋 

Here F is the matrix of forces on the fluid K is the equivalent of the stiffness matrix (essentially 

the fluid viscosity) and  is the “stream function” (the stream function is related to the 

velocity components of the fluid stream).  

A B 



 
 

8
 

 

In general, you might notice that all these equations have the following form: 

𝑨 = 𝑷𝑩 

Where A is the input action applied to the system (like a force or a heat source), B is the 

resulting output behavior of the system (which is what we want to find in the end - like 

displacement, temperature or velocity) and P is the system properties (often material 

parameters) which relate the other two together. It is systems which can be expressed like 

this that FEAs are particularly adept at solving - and we do this by rearranging the equation 

using the inverted matrix P: 

𝑩 = 𝑷−𝟏𝑨 

TOPIC 5 – HOW FDM WORKS 

 

Of all the methods described in these notes, FDM is the most general and (arguably) the most 

powerful. It’s one of the key tools in modern science and engineering and it can be applied, 

in some form, to solving almost all differential equations. It was the main CFD method before 

FVM became popular. For these reasons we will concentrate more effort into understanding 

it.  

First of all, let’s get the general idea. 

Think back to what the derivative actually means – it’s just the slope or gradient of a curve. 

So, if we were not concerned too much about accuracy, we could approximate the slope by 

the change in y divided by the change in x which is y/x, as shown in the diagram in figure 8. 
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Figure 8, the derivative of a curve and its approximation – the difference function. 

 Replacing dy/dx by y/x in a differential equation makes it into a difference equation: 

𝑑𝑦

𝑑𝑥
+ 5𝑥 = 3  This is a differential equation 

∆𝑦

∆𝑥
+ 5𝑥 = 3  This is the difference equation 

Replacing the differential equation by a difference version means that we can rearrange the 

equation and use it to iteratively work out the solution (the actual values of x and y), because:  

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + ∆𝑥 

And 

𝑦𝑛𝑒𝑤 = 𝑦𝑜𝑙𝑑 + ∆𝑦 

Let’s see how this works in practice. 

Suppose we have a grid or mesh of points (where have we heard this before) across the range 

and domain of the graph. Let’s call the points on the x axis in and those on the y axis jn. This 

gives us the setup shown in figure 9 (this setup is actually for a function with two independent 

y 

x 

𝑑𝑦

𝑑𝑥
 

The proper derivative is the 

slope of the curve at one 

single and precise point. 

y 

x 

∆𝑦

∆𝑥
 y/x gives us the 

approximate slope and 

therefore derivative (the 

smaller x is the more 

accurate the result – the 

smaller the error). 

𝑆𝑜 
𝑑𝑦

𝑑𝑥
≅

∆𝑦

∆𝑥
 

𝑂𝑟 
∆𝑦

∆𝑥
=

𝑑𝑦

𝑑𝑥
+ 𝑒𝑟𝑟𝑜𝑟 
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variables (a 2D function) - the equation above only has one (x), so could be represented by a 

simple line and just one index (i)). 

 

 

 

 

 

 

 

 

 

 

Figure 9, a two dimensional grid 

So in this notation the last two equations would become (in 2D): 

𝑥𝑖+1 = 𝑥𝑖 + ∆𝑥 

And 

𝑦𝑗+1 = 𝑦𝑗 + ∆𝑦 

And if we know the conditions at the start (the initial and boundary conditions), then we can 

work out the rest of the points. 

Let’s do an example to see how this works. We’ll take the previous equation and say that the 

initial conditions are x0 = 0, y0 = 2. Because there’s only one dependent variable in our equation 

(y), we’ll choose an incremental step size for x of x = 0.1 (rather than calculate it, as we’d 

have to do in 2D), we’ll start by rearranging the previous equation: 

∆𝑦

∆𝑥
+ 5𝑥 = 3  

∴  ∆𝑦 = (3 − 5𝑥)∆𝑥  

 

 

i0   i1  i2  i3  i4 
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Let’s work out the values for x1 and y1: 

∆𝑦 = (3 − (5 × 0)) × 0.1 = 0.3 

𝑥1 = 0 + 0.1 = 0.1 

𝑦1 = 2 + (0.3) = 2.3 

And using these values we could calculate x2 and y2. 

 

So, we could iterate this over the whole grid (if the equation where two dimensional). If the 

x axis were time, this would be called a time-marching solution, although more generally 

(using any variable) it’s called an explicit approach.   

In fact to calculate the derivative as a difference from the graph there are actually three 

possible methods common used as illustrated in figure 10. 

 

 

 

 

 

 

 

 

Figure 10, the three approximations to the first derivative.  

TASK 1 
 

(a) Calculate x2 and y2 given the two points calculated above. 
 

(b) This equation is solved analytically in the revision notes from the start of the 
course. Given that solution and the initial conditions given above, compare 
the values from the analytical solution and the difference equation.  

 
 

y 

x 

yi+1 

yi 

yi-1 

x 

𝑑𝑦

𝑑𝑥
≅

∆𝑦

∆𝑥
=

𝑦𝑖+1 − 𝑦𝑖

∆𝑥
 (+𝑒𝑟𝑟𝑜𝑟) ∶   Forward difference method 

𝑑𝑦

𝑑𝑥
≅

∆𝑦

∆𝑥
=

𝑦𝑖 − 𝑦𝑖−1

∆𝑥
 (+𝑒𝑟𝑟𝑜𝑟) ∶   Backward difference method 

𝑑𝑦

𝑑𝑥
≅

∆𝑦

∆𝑥
=

𝑦𝑖+1 − 𝑦𝑖−1

2∆𝑥
 (+𝑒𝑟𝑟𝑜𝑟) ∶   Central difference method 
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Now, notice something interesting here. The equation we actually used in the calculation 

above was the backwards difference one (we calculated yi knowing the previous (initial) value 

yi-1). So we can actually write down the equivalent equation (which gives the same result) 

using the notation above: 

𝑑𝑦

𝑑𝑥
+ 5𝑥 = 3 

⇒
𝑦𝑖 − 𝑦𝑖−1

∆𝑥
+ 5𝑥 = 3 

(3 − 5𝑥)∆𝑥 = 𝑦𝑖 − 𝑦𝑖−1 

𝑦𝑖 = 𝑦𝑖−1 + (3 − 5𝑥)∆𝑥 

Which is exactly equivalent to what we had before.  

 

However, if we were to use the forward or central differences, we’d need to know the values 

at i+1 – but how could we? They haven’t been calculated yet.  

Well there is a way around this, we could write down an equation at every node (which will 

include these unknown terms) and solve them simultaneously. This can done using matrix 

methods (one simple way is using a method called Gaussian elimination). 

This (simultaneous equation) approach is called the implicit approach. Now, you might be 

wondering to yourself, ‘why bother with this when the explicit approach is so much simpler’. 

Well, the answer to this is that although it’s much easier to implement, the explicit method 

only works well with the more straightforward equations (like Maxwell’s equations and the 

heat transfer equation) – this is because it’s less stable and predictable – but unfortunately 

the Navier-Stokes equations are exactly the complex type which need the stability of the 

implicit approach.         

Finally, we can also write down similar approximations to those above for second order and 

higher derivatives – although in practice, second order is the highest we usually ever need. 

The second order central difference is: 

𝑑2𝑦

𝑑𝑥2
≅

𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1

∆𝑥2
 

TASK 2 
 
Check you get the same answer as you got in task 1 using this formulation. 
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TOPIC 6 – HOW FVM WORKS 

 

The Finite Volume Method (FVM) is the main method currently used in CFD solvers. This is 

mainly for two reasons: 

• It allows the easier use of unstructured grids or meshes – very handy for fitting around 

awkward shapes.  

• It captures flow discontinuities like shockwaves better than the other methods.  

We only have time here to discuss the basic idea behind FVM and not the fine detail. It works 

particularly well in problems where some quantity can be visualized as “flowing”.   

The mesh in FVM forms elements of volume (in this case a volume α): 

 

 

 

 

Now in a system where something flows – this might be mass, momentum or energy in a 

mechanical system or charge in an electrical one - we can represent this flowing quantity as 

a vector field Q which will be a function of space (and also time, but we’ll consider that it’s 

in steady-state here) Q (x, y, z). I’ll call this Q(V) here (Q in space V) The amount of Q in the 

volume α is given by the volume integral: 

∭ 𝑸(𝑉)𝑑𝑉 

If the amount of Q is increasing or decreasing within the volume, its divergence will be non-

zero: 

𝑑𝑖𝑣 𝑸(𝑉) = ∇ ∙ 𝑸(𝑉) 

Specifically, if the net content in the volume is increasing then the divergence will be negative 

and if it is decreasing them the divergence is positive.  

The divergence term so produced can be converted into a surface integral using the divergence 

theorem: 

∭ ∇ ∙ 𝑸(𝑉)𝑑𝑉 = ∯(𝑸(𝑉) ∙ 𝒏)𝑑𝑆 

 

α 

α 

        α                          S 
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Giving us the fluxes into or out-off the volume surfaces: 

 

  

 

 

And because the flux leaving the back face of a volume must be the same as that entering the 

front face of the next (even although they are different shapes), this gives us the starting 

point for the next volume and so on.  

 

 

 

 

Which is why FVM allows such unstructured meshing.  

TOPIC 7 – ISSUES WITH NUMERICAL METHODS 

 

All the methods explained above have an error (they are inaccurate) - because they are approximations 

to the “real” (exact) equations. As the solution progresses it becomes less and less accurate – this must 

be taken into account when interpreting the results and factors of safety need to be used carefully in 

actual designs to mitigate the effect.       

As discussed above, solutions can also be unstable (they can fluctuate wildly and unpredictably) - in 

which case the results are useless and will not bear any relationship to reality. Similarly, solutions can 

sometimes “blow-up” and become very large (or diminish to zero) and these are again completely 

inaccurate.  

Sometimes such issues can be cured by changing the initial or boundary conditions or reducing the 

simulation step-size. However, simulation results should always be viewed cautiously and it is essential 

to perform simple hand calculations to confirm that the answers are in the correct “ball-park”. Another 

useful method is to run a series of simulations with slightly different setups (topology, initial and 

boundary conditions and step sizes) and confirm that these all give similar results (or try the problem 

on a different simulator).    

 

 

α 

S 

Q(V)·n 

Volume 1 
Volume 2 
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SUMMARY 

 

• Although there are many numerical methods which can be used in science and engineering, 

three dominate - and these are: The Finite Element Method (or Analysis or Technique), 

FEA/FEM; The Finite Difference Method (FDM) and the Finite Volume Method (FVM).  

 

• All numerical methods produce approximate solutions (they have an error) and can form 

divergent and/or unstable solutions (and these solutions are complete rubbish).  

 

• FEAs are the main mechanical structures method and are particularly suited to problems which 

can be formulated in a similar way and yield relationships in the form A = P B. Where A is the 

input applied to the system, B is the resulting output and P is the system properties which 

relate the other two together (these variables being vectors or matrices). 

 

• FDM is the most flexible method and involves changing differential equations into difference 

equations and finding the solution by iterating these.  

 

• There are two distinct ways of posing FDM problems – as an explicit formulation (which is 

simple but often unstable) or as an implicit formulation (which leads to complex simultaneous 

equations, but is usually stable).  

 

• FVM is now the main CFD approach. It works by formulating an integral expression for the 

amount of substance in a volume, finding the divergence of this and using this to develop an 

expression for the flow through the walls of the volume element using the divergence 

theorem.    

Note that this whole topic is complex subject at the forefront of science and engineering, 

and the approach we’ve gone through above is simplified in some respects (and methods 

differ somewhat depending on the nature of the problem to be solved) – if you want to 

know the full details, study the references below.   
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REFERENCES, OTHER MATERIAL AND BIBLIOGRAPHY 

 

If you are interested in delving into FDM in more detail, there are two excellent (master’s 

level) courses available on Youtube: 

Lorena Barba of Boston University (CFD course) 

Very good and thorough, but old fashioned course:  

https://www.youtube.com/playlist?list=PL30F4C5ABCE62CB61 

Raymond Rumpf of The University of Texas, El Paso (Maxwell’s equations using FDM) 

Similarly good, but thorough, course: 

https://www.youtube.com/playlist?list=PLLYQF5WvJdJWoU9uEeWJ6-MRzDSziNnGt 

There are also many other Youtube courses which I haven’t had a chance to check. 

 

Two particularly recommended CFD books are: 

John D Anderson, Computational Fluid Dynamics: The basics with applications, McGraw-Hill, 

1995 (several editions). 

Jiyuan Tu, Guan-Heng Yeoh and Chaoqun Liu, Computational Fluid Dynamics: A practical 

approach, Butterworth-Heinemann (Elsevier), 2013 (2nd ed). 

 

There are Wikipedia pages on all the techniques and these are excellent “jumping off points” 

for further study: 

https://en.wikipedia.org/wiki/Finite_element_method 

https://en.wikipedia.org/wiki/Finite_difference_method 

https://en.wikipedia.org/wiki/Finite_volume_method 
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